Boolean and Beyond
サービス導入事例私たちについてAI活用ガイド採用情報お問い合わせ
Boolean and Beyond

AI導入・DX推進を支援。業務効率化からプロダクト開発まで、成果にこだわるAIソリューションを提供します。

会社情報

  • 私たちについて
  • サービス
  • ソリューション
  • Industry Guides
  • 導入事例
  • AI活用ガイド
  • 採用情報
  • お問い合わせ

サービス

  • AI搭載プロダクト開発
  • MVP・新規事業開発
  • 生成AI・AIエージェント開発
  • 既存システムへのAI統合
  • レガシーシステム刷新・DX推進
  • データ基盤・AI基盤構築

Resources

  • AI Cost Calculator
  • AI Readiness Assessment
  • Tech Stack Analyzer
  • AI-Augmented Development

AI Solutions

  • RAG Implementation
  • LLM Integration
  • AI Agents Development
  • AI Automation

Comparisons

  • AI-First vs AI-Augmented
  • Build vs Buy AI
  • RAG vs Fine-Tuning
  • HLS vs DASH Streaming

Locations

  • Bangalore·
  • Coimbatore

法的情報

  • 利用規約
  • プライバシーポリシー

お問い合わせ

contact@booleanbeyond.com+91 9952361618

© 2026 Boolean & Beyond. All rights reserved.

バンガロール、インド

Boolean and Beyond
サービス導入事例私たちについてAI活用ガイド採用情報お問い合わせ
Boolean and Beyond

AI導入・DX推進を支援。業務効率化からプロダクト開発まで、成果にこだわるAIソリューションを提供します。

会社情報

  • 私たちについて
  • サービス
  • ソリューション
  • Industry Guides
  • 導入事例
  • AI活用ガイド
  • 採用情報
  • お問い合わせ

サービス

  • AI搭載プロダクト開発
  • MVP・新規事業開発
  • 生成AI・AIエージェント開発
  • 既存システムへのAI統合
  • レガシーシステム刷新・DX推進
  • データ基盤・AI基盤構築

Resources

  • AI Cost Calculator
  • AI Readiness Assessment
  • Tech Stack Analyzer
  • AI-Augmented Development

AI Solutions

  • RAG Implementation
  • LLM Integration
  • AI Agents Development
  • AI Automation

Comparisons

  • AI-First vs AI-Augmented
  • Build vs Buy AI
  • RAG vs Fine-Tuning
  • HLS vs DASH Streaming

Locations

  • Bangalore·
  • Coimbatore

法的情報

  • 利用規約
  • プライバシーポリシー

お問い合わせ

contact@booleanbeyond.com+91 9952361618

© 2026 Boolean & Beyond. All rights reserved.

バンガロール、インド

Boolean and Beyond
サービス導入事例私たちについてAI活用ガイド採用情報お問い合わせ
Insights/Engineering
Engineering8 min read

Building AI Agents for Production: Lessons from the Field

What we've learned deploying autonomous AI agents in real business environments—from architecture decisions to guardrails that actually work.

BB

Boolean and Beyond Team

Dec 15, 2025

Share:

The Promise and Reality of AI Agents

AI agents are no longer science fiction. They're writing code, researching topics, managing workflows, and making decisions in production systems today. But the gap between a demo and a production-ready agent is significant.

Over the past year, we've deployed AI agents across various industries—from automated research assistants to customer service orchestrators. Here's what we've learned about building agents that actually work.

Architecture Matters More Than You Think

The first mistake most teams make is treating agent architecture as an afterthought. "Just wire up GPT-4 with some tools and you're done, right?" Not quite.

The orchestration layer is everything. Your agent needs to:

  • Maintain context across multi-step tasks
  • Recover gracefully from failures
  • Know when to escalate to humans
  • Track its own reasoning for debugging

We've found that a hierarchical agent structure—with a coordinator agent managing specialized sub-agents—scales much better than monolithic designs.

Guardrails That Actually Work

Every production agent needs guardrails. But not all guardrails are created equal.

Input validation catches obvious issues but misses nuanced problems. Output validation is essential but can be gamed. Behavioral monitoring looks at patterns over time and catches drift before it becomes a problem.

The most effective guardrails we've implemented:

  • Rate limiting with context awareness - Not just API calls, but action frequency by type
  • Semantic boundary checking - Is the agent staying within its defined scope?
  • Human-in-the-loop triggers - Confidence thresholds that route to humans
  • Audit logging with replay capability - Every decision traceable and reproducible

The Memory Problem

Agents need memory, but memory is hard. Too little and they forget context. Too much and they hallucinate based on irrelevant history.

We use a tiered memory system:

  • Working memory for the current task (conversation context)
  • Episodic memory for recent interactions (vector store with recency weighting)
  • Semantic memory for persistent knowledge (RAG over documentation)

The key insight: memory retrieval quality matters more than memory quantity. A well-tuned retrieval system with 1000 documents beats a noisy one with 100,000.

Cost Management at Scale

AI agents can get expensive fast. A complex research task might involve dozens of LLM calls, each with substantial token counts.

Strategies that work:

  • Model cascading - Use smaller models for simple subtasks
  • Caching aggressively - Same query patterns emerge frequently
  • Batch operations where possible - Reduce API overhead
  • Set hard cost limits per task - Prevent runaway spending

Monitoring and Observability

You can't improve what you can't measure. Every production agent needs:

  • Task success rates - Are agents completing their objectives?
  • Time to completion - How efficient are they?
  • Error categorization - What types of failures occur?
  • Cost per task - What's the economic reality?

We've built dashboards that show agent performance in real-time, with alerts for anomalies and drift detection for gradual degradation.

The Human Element

The best AI agents augment humans rather than replace them. Design for collaboration:

  • Clear handoff points when confidence is low
  • Transparent reasoning so humans can verify decisions
  • Easy override mechanisms for course correction
  • Feedback loops that improve the agent over time

Looking Forward

AI agents are evolving rapidly. What works today may be obsolete in six months. The teams that succeed are those that build with adaptability in mind—modular architectures, comprehensive testing, and a culture of continuous improvement.

The future isn't fully autonomous AI. It's intelligent systems that work seamlessly alongside humans, handling the routine while humans focus on the exceptional.

Found this article helpful?

Share:
Back to all insights

Ready to work together?

Let's discuss how we can help bring your ideas to life with thoughtful engineering and AI that actually works.

お問い合わせ
Boolean and Beyond

AI導入・DX推進を支援。業務効率化からプロダクト開発まで、成果にこだわるAIソリューションを提供します。

会社情報

  • 私たちについて
  • サービス
  • ソリューション
  • Industry Guides
  • 導入事例
  • AI活用ガイド
  • 採用情報
  • お問い合わせ

サービス

  • AI搭載プロダクト開発
  • MVP・新規事業開発
  • 生成AI・AIエージェント開発
  • 既存システムへのAI統合
  • レガシーシステム刷新・DX推進
  • データ基盤・AI基盤構築

Resources

  • AI Cost Calculator
  • AI Readiness Assessment
  • Tech Stack Analyzer
  • AI-Augmented Development

AI Solutions

  • RAG Implementation
  • LLM Integration
  • AI Agents Development
  • AI Automation

Comparisons

  • AI-First vs AI-Augmented
  • Build vs Buy AI
  • RAG vs Fine-Tuning
  • HLS vs DASH Streaming

Locations

  • Bangalore·
  • Coimbatore

法的情報

  • 利用規約
  • プライバシーポリシー

お問い合わせ

contact@booleanbeyond.com+91 9952361618

© 2026 Boolean & Beyond. All rights reserved.

バンガロール、インド